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Abstract
Aims: Climate shapes forest types on our planet and also drives the differentiation 
of zonal vegetation at regional scale. A climate-based ecological model may provide 
an effective alternative to the traditional approach for assessing limitations, thresh-
olds, and the potential distribution of forests. The main objective of this study is to 
develop such a model, with a machine-learning approach based on scale-free climate 
variable estimates and classified vegetation plots, to generate a fine-scale predicted 
vegetation map of Taiwan, a subtropical mountainous island.
Location: Taiwan.
Methods: A total of 3,824 plots from 13 climate-related forest types and 57 climatic 
variable estimates for each plot were used to build an individual ecological niche 
model for each forest type with random forest (RF). A predicted vegetation map was 
developed through the assemblage of RF predictions for each forest type at the spa-
tial resolution of 100 m. The accuracy of the ensemble RF model was evaluated by 
comparing the predicted forest type with its original classification by plot.
Results: The climate environment of regions higher than 100 m above sea level in 
Taiwan was classified into potential habitats of 13 forest types by using model pre-
dictions. The predicted vegetation map displays a distinct altitudinal zonation from 
subalpine to montane cloud forests, followed by the latitudinal differentiation of sub-
tropical mountain forests in the north and tropical montane forests in the south, with 
an average mismatch rate of 6.59%. An elevational profile and 3D visualization dem-
onstrate the excellence of the model in estimating a fine, precise, and topographically 
corresponding potential distribution of forests.
Conclusions: The machine-learning approach is effective for handling a large num-
ber of variables and to provide accurate predictions. This study provides a statistical 
procedure integrating two sources of training data: (a) the locations of field sampling 
plots; and (b) their corresponding climate variable estimates, to predict the potential 
distribution of climate-related forests.
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1  | INTRODUC TION

Climate is the primary element that governs the distribution of plant 
species, and most species are adapted to a specific range of climatic 
conditions, which is referred to as their climatic niche (Pearson & 
Dawson, 2003; Wang, Wang, Innes, Nitschke, & Kang, 2016). The 
vegetation–climate relationship has long been recognized by ecol-
ogists, and the concept has been applied to depict the regionaliza-
tion of ecoregions or vegetation types for decades (Holdridge, 1947; 
Bailey, 1983; Su, 1984b; Fang, Song, Liu, & Piao, 2002). Recent prog-
ress in ecological niche modeling and the accessibility of accurate and 
fine-scale climate data has enabled vegetation–climate relationships 
to be used in numerous studies for a variety of purposes, including 
projection of the historical and current distribution of biomes and 
forests for management purposes (Rehfeldt, Crookston, Warwell, & 
Evans, 2006), prediction of changes in species (Matsui et al., 2018) 
or ecosystems (Brinkmann, Patzelt, Schlecht, & Buerkert, 2011; 
Rehfeldt, Crookston, Sáenz-Romero, & Campbell, 2012; Wang, 
Campbell, O'Neill, & Aitken, 2012) under various global warming 
scenarios, and provision of strategic tools for conservation and ad-
aptation to the impact of climate change (Hansen & Phillips, 2015; 
Klassen & Burton, 2015; Wang, Wang, et al., 2016).

Most predictive ecological niche-modeling studies focused on 
large landscapes and dominant forests in temperate zones, but these 
studies seldom explored the complex, highly mixed, and species-di-
verse forests in tropical and subtropical regions. Distinguishing the 
boundaries of tropical and subtropical forest communities is difficult 
due to their similar broad-leaved physiognomy and variable com-
position (Zhu, Yong, Zhou, Wang, & Yan, 2015). Comprehensively 
and clearly tagged samples are requisite for training an effective and 
robust statistical classifier; however, the lack of high-quality field 
inventory data and the variable species composition in tropics and 
subtropics greatly limited the performance of statistical models in 
these extensive territories (Martin, Sherman, & Fahey, 2007).

Taiwan is an island located in the middle of the monsoon region of 
Asia with more than 200 peaks over 3,000 m a.s.l. The diverse climatic 
conditions along the altitudinal gradient create a distinct altitudinal 
zonation of forests within the island, from tropical lowland rainforest 
(Chao et al., 2010) to subalpine coniferous forest (Lin et al., 2012). The 
overall vegetation patterns on the island have been studied over the 
past few decades, recognizing and characterizing six distinct altitu-
dinal vegetation zones within mesic to humid habitats (Su, 1984b). A 
national vegetation inventory was completed by the Taiwan Forestry 
Bureau in 2008. This inventory revealed that 58% of Taiwan's territory 
was covered by forests, 53% of which are broad-leaved forests, with 
the remaining approximately 47% of the forested lands comprised of 
coniferous or mixed forests. Li et al. (2013) established a vegetation 
classification scheme based on the floristic data of 8,804 plots from 

the National Vegetation Database of Taiwan, which included 922 tree 
and shrub species in the analysis. They used the Cocktail determina-
tion key (CoDeK), a software application to formalize classification 
definitions, and developed automatic assignments of new plots to the 
defined vegetation classification scheme. Based on the formalized ap-
proach, a total of 6,574 plots were successfully classified into 21 for-
est types in which 12 types were zonal while nine types were azonal. 
Li et al. (2013) suggested that the main factors responsible for the 
differentiation of zonal forests are temperature and moisture, which 
vary according to the latitudinal distribution and altitudinal stratifica-
tion in mesic to humid habitats. In contrast, most azonal forests are 
affected by specific soil properties or disturbance rather than climate, 
and their habitats are usually warmer and drier or colder and wetter 
than those of zonal forests.

Since climate is the main factor controlling the differentiation of 
zonal vegetation, precise and fine-scaled climate data are considered 
to be a reasonable alternative for assessing limitations, thresholds, 
and the potential distribution of forests across a large landscape, if 
an effective statistical classifier exists. Machine learning is a new, 
high-performance approach applied in ecological niche modeling, 
which works outstandingly when a continuous supply of informa-
tion for improving its performance is available. In Taiwan, intensive 
sampling plots tagged by the classification scheme and its corre-
sponding climate variable estimates would be ideal sources to train 
a machine-learning model for exploring the vegetation–climate re-
lationship. The main objectives of this study were to: (a) reveal the 
climatic factors responsible for the current distribution of dominant 
forest types in Taiwan; (b) develop an effective and reproducible sta-
tistical model for predicting the potential distribution of climate-re-
lated forests; and (c) use Taiwan's zonal vegetation as an example to 
evaluate the performance of the model.

2  | METHODS

2.1 | Study area

Taiwan (21.83–25.33°  N, 120.00–122.00°  E) is a subtropi-
cal island on the western edge of the Pacific Ocean. Hills and 
mountains occupy more than 70% of the island's 36, 000  km2. 
A principal mountain range, the Central Mountain Range, runs 
through the whole island in a NNE–SSW trend, and the highest 
peak is 3,952 m a.s.l. (Figure 1). The climate in Taiwan is mainly 
affected by the prevailing monsoons and typhoons. In winter, the 
northeast monsoon from Siberia passes through Japan and the 
East China Sea, bringing plentiful precipitation and cold tempera-
ture to the windward slopes of northeast Taiwan. By contrast, 
the southwest monsoon from Indochina and the South China Sea 
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brings heavy rains and a humid climate in the summer, inducing 
the rainy season in south Taiwan (Su, 1984a; Lin, Lung, Guo, Wu, 
& Su, 2009). Typhoons occur only occasionally but they represent 
severe climatic events in Taiwan. They contribute a sizable por-
tion of the annual rainfall and are the primary trigger of landslides 
and disturbances in mountain areas.

Topographical variations in the form of lofty mountains and 
steep gorges result in a wide temperature range that forms distinct 
stratification of climatic zones in mountain areas and creates diverse 
microhabitats harboring many vascular plant species (~4,200 spe-
cies). The zonation of forest types along the altitudinal gradient of 
Taiwan was first reported by Sasaki (1924), followed by a series of 
studies depicting the physiognomy and species composition of na-
tive flora (Suzuki, 1938; Liu & Su, 1972; Chang, 1974). Su (1984a, 
1984b, 1985) evaluated overall vegetation patterns in Taiwan and 
concluded that the distribution of natural vegetation is governed 
by the alternating winter and summer monsoons, coupled with the 
steep topography. He also proposed a widely accepted scheme for 
classifying six altitudinal vegetation zones in mesic to humid habitats 

and for some parts of the azonal vegetation in the drier successional 
regions of Taiwan.

2.2 | Vegetation data

The geographic coordinates of 6,574 plots and their corresponding 
21 vegetation classification types were received from Li et al. (2013); 
then, a preliminary inspection was conducted to eliminate plots with 
duplicate coordinates. Eight forest types, which were climate-un-
related or geographically isolated, were removed from the original 
dataset: two types were seashore woodlands and mangroves; three 
types were successional woodland related to historical landslides 
and disturbances; two types were rock outcrop forests associated 
with uplifted coral-reef tableland, limestone, and scree slopes; and 
the last type was tropical forest on Green Island and Orchid Island, 
isolated from the Taiwan main island. Finally, a total of 3,824 plots 
belonging to 13 climate-related forest types (Table 1) were retained 
to explore the relationship between climate and vegetation.

F I G U R E  1   Location and digital 
elevation surface of Taiwan island
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2.3 | Climate data

Grid-based climate data were easily accessible and suitable 
for modeling general patterns at global and regional scales 
(Hannaway et al., 2005; Hijmans, Cameron, Parra, Jones, & 
Jarvis, 2005; Harris, Jones, Osborn, & Lister, 2014). However, 
for detailed ecological research, such climate data were usu-
ally too coarse to provide exact climate estimates for each plot 
in mountainous and topographically diverse areas. In Taiwan, a 
meteorological framework named the Taiwan Climate Change 
Projection and Information Platform (TCCIP) has integrated his-
torical observations from thousands of weather stations to de-
velop a 5 km × 5 km gridded climate surface covering the period 
of 1960–2012 (Hsu et al., 2011; Weng & Yang, 2012). A climate 
data downscaling process named clim.regression (Lin et al., 2018), 
which is based on a synthetic approach of bilinear interpolation 
and dynamic local regression (Wang, Hamann, Spittlehouse, & 
Carroll, 2016; Wang, Wang, Innes, Seely, & Chen, 2017), was 
used to downscale the TCCIP 5  km  ×  5  km dataset to a scale-
free and seamless surface by conducting reasonable elevational 
adjustments using local lapse rate estimates. The accuracy of the 
climate downscaling model has been evaluated by comparing to 
historical observations from the 15 weather stations over differ-
ent altitudinal zones. It demonstrated prediction errors of 0.56 
°C, 0.79 °C, 0.80 °C, and 36.26  mm in Tave, Tmin, Tmax, and PPT 
(measured by the mean absolute error between monthly estima-
tion and observation), respectively, and these were considerably 

improved over the TCCIP data (Lin et al., 2018). A total of 73 cli-
mate variable estimates were obtained through the downscaling 
process, including annual, seasonal, and monthly variables, along-
side biologically relevant derivatives.

For exploring the relationship between vegetation and cli-
mate, 57 of the 73 climate variable estimates (Table 2), specific to 
the location of vegetation survey plots from Li et al. (2013) for the 
reference period of 1986–2005, were selected and were used as 
parameters to construct raw climate niche models for each forest 
type. Seasonal climate variables were not considered because of 
the large number of monthly variables. A gridded climate surface 
at a resolution of 100  m  ×  100  m, which covers regions higher 
than 100 m a.s.l. in Taiwan (2.7 million hectares in total), was gen-
erated from the same set of 57 climate variable estimates by clim.
regression for predicting the climatic suitability of forests over the 
study area.

2.4 | Construction of the ecological niche model and 
vegetation prediction

The R version (Liaw & Wiener, 2002) of the random forest (RF) 
algorithm (Breiman, 2001) was used to model the relationship be-
tween the occurrence of each forest type and the climatic vari-
ables. RF works best when the samples are relatively balanced 
between classes (Breiman, 2001; Rehfeldt et al., 2006); however, 
most empirical classification problems and ecological samplings 

TA B L E  1   The training data incorporated in this study, including 13 climate-related forest types and their corresponding 3,824 field plots. 
The abbreviations of each forest type follows the classification by Li et al. (2013)

Forest type Number of plots

High-mountain coniferous woodlands and forests (C1)

Juniperus subalpine coniferous woodland and scrub (C1A01) 102

Abies–Tsuga upper-montane coniferous forest (C1A02) 89

Subtropical mountain zonal forests (C2)

Chamaecyparis montane mixed cloud forest (C2A03) 543

Fagus montane deciduous broad-leaved cloud forest (C2A04) 55

Quercus montane evergreen broad-leaved cloud forest (C2A05) 1,058

Machilus–Castanopsis sub-montane evergreen broad-leaved forest (C2A06) 359

Phoebe–Machilus sub-montane evergreen broad-leaved forest (C2A07) 410

Ficus–Machilus foothill evergreen broad-leaved forest (C2A08) 145

Tropical mountain zonal forests (C3)

Pasania–Elaeocarpus montane evergreen broad-leaved cloud forest (C3A09) 57

Drypetes–Helicia sub-montane evergreen broad-leaved forest (C3A10) 425

Dysoxylum–Machilus foothill evergreen broad-leaved forest (C3A11) 27

Tropical mountain azonal forests (C5)

Illicium–Cyclobalanopsis tropical winter monsoon forest (C5A13) 40

Subtropical mountain azonal woodlands and forests (C6)

Pyrenaria–Machilus subtropical winter monsoon forest (C6A15) 514

Total 3,824
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are imbalanced. A total of 13 RF models, which represented the 
climatic niche of each forest type, were constructed in this study. 
For each RF model, plots belonging to the target forest type were 
treated as “presence,” and the remnants were regarded as “ab-
sence.” In most cases, occurrences of absence were much more 
common than those of presence for each forest type, leading 
to imbalanced samples, which can result in poor predictive per-
formance for the minority (presence) class. Therefore, balanced 
random forest (Chen, Liaw, & Breiman, 2004) and multiple forest 
approaches (Wang, Wang, et al., 2016) were applied to build an 
ensemble of RF models to reduce the effect of imbalanced sam-
ples. Presence points (in minority) were combined with the same 
number of randomly selected points of absence (in majority), to 
establish the training dataset of each RF model. The identical 
sample size of absence and presence can ensure balanced sam-
pling between classes. The above-mentioned model-building pro-
cess was repeated 100 times to achieve “multiple forests” — the 
ensemble predictions from multiple forests were used to repre-
sent the climatic suitability of each forest type.

Although RF can handle confounding variables, a final model 
with the parsimonious set of variables that optimized variance is 
necessary to reduce the risk of over-fit and speed up the prediction. 
The R package VSURF was implemented to select a minimum set of 
predictors (Genuer, Poggi, & Tuleau-Malot, 2015) from the 57 cli-
mate variable estimates provided by clim.regression for each forest 

type. VSURF first calculates the importance scores of all variables 
and eliminates variables of little importance, based on a descending 
importance rank. The variables that result in the lowest model out-
of-bag (OOB) error are selected as explanatory variables. This set of 
explanatory variables is further truncated to eliminate all but one 
of any correlated variables, resulting in a minimum set of predictors 
for constructing the most parsimonious prediction model. For each 
simulation, we set the number of trees as 500 and used the default 
square root of the number of climate variables at each node (Liaw & 
Wiener, 2002).

Each geographical cell of the 100 m × 100 m projecting surface 
received climatic suitability for the 13 forest types based on pre-
dictions from multiple forests. Figure 2 presents a flow diagram 
evaluating the most suitable forest type for each cell according to 
the following criteria: (a) cells with climatic suitability lower than 
0.3 for all forest types were classified as “uncertain”; (b) cells that 
shared the same suitability for two (or more) forest types (e.g., for-
est type i and j) and had suitability higher than 0.3 (included) were 
assigned as “mixed stands” between forest type i and j; and (c) the 
remnant cells, namely those with high suitability for a single forest 
type, were defined as “pure stands” of the predicted forest type. 
The cut-off threshold of 0.3 in the first step affects the propor-
tion of the study areas being identified as an “uncertain” entity. We 
tested values between 0 and 0.5 as the threshold and found a slight 
difference in resulting areas as type “uncertain,” ranging from 0 to 
1,418  ha (accounting for 0–0.05% of the total study area). Thus, 
we arbitrarily chose the midpoint value 0.3 as the threshold, which 
demonstrates a performance similar to our field experience. The 
ensemble of climatic suitable forest types and their suitability were 
composed as a raster layer to produce the predicted vegetation 
map using ESRI ArcGIS Pro 2.4.

TA B L E  2   The 57 climate variables which were generated by the 
climate downscaling process of clim.regression, were incorporated in 
the random forest models

Climate variables Definition

Monthly precipitation (PPT1 to 
PPT12)

 

Mean annual precipitation (MAP)  

Mean summer precipitation (MSP) Summation of precipitation 
from May to September

Ratio of winter precipitation 
(WPR)

(PPT12 + PPT1+PPT2)/MAP 
(Li et al., 2013)

Mean monthly minimum 
temperature (Tmin1 to Tmin12)

 

Mean monthly temperature (Tave1 
to Tave12)

 

Mean annual temperature (MAT)  

Mean monthly maximum 
temperature (Tmax1 to Tmax12)

 

Temperature difference (TD) Tave7 minus Tave1

Annual heat:moisture index (AHM) (MAT + 10)/(MAP/1000)

Summer heat:moisture index 
(SHM)

(Tave7)/(MSP/1000)

Warmth index (WI) Annual summation of mean 
monthly temperature higher 
than 5 °C (Su, 1984b)

Precipitation deficiency (PD) Difference between annual 
potential evapotranspiration 
and MAP (Su, 1985)

F I G U R E  2   The workflow diagram for the ensemble of random 
forest (RF) predictions of each forest type to evaluate the most 
suitable forest type(s) of each geographic cell
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3  | RESULTS

3.1 | Climatic niche and important variables of 
forest types

The result of VSURF variable truncation revealed that the impor-
tance and number of selected climate variables varied among for-
est types. The OOB error arising from the model-building process 
of 500 trees is 7.9% on average, ranging from 1.2% to 18.2% de-
pending on forest type (Table 3). The vegetation–climate relation-
ships of high-mountain and subtropical mountain zonal forests 
(from Juniperus woodland and scrub to Ficus–Machilus forest in 
Table 3) are strongly driven by temperature factors (Tmax, Tave, and 
Tmin); that is, the primary predictors of high-mountain, temper-
ate, and subtropical forests are usually dominated by temperature 
rather than precipitation, respectively. Furthermore, the maximum 
monthly temperature at the start of the growing season (March 
to June) closely relates to the occurrence of subalpine and conif-
erous forests (Juniperus and Abies–Tsuga) distributed at elevations 
higher than 2,500 m a.s.l. The critical effect shifts to winter tem-
perature (December to February) for cloud forests at elevations 
of 1,500–2,500  m a.s.l., which are dominated by Chamaecyparis 
or Fagus. By contrast, precipitation-related factors, especially 

the relative dryness in spring (March to May), display a more evi-
dent correlation with the climatic suitability of tropical mountain 
zonal forests in south Taiwan (Pasania–Elaeocarpus cloud forest, 
Drypetes–Helicia forest, and Dysoxylum–Machilus forest). Due to 
the co-effect of topographical exposure and windward chilling of 
the northeast monsoon during winter, two azonal forest types, the 
tropical Illicium–Cyclobalanopsis monsoon forest and the subtropi-
cal Pyrenaria–Machilus monsoon forest, exhibit climatic features of 
higher precipitation and lower temperature than habitats nearby 
them in winter (Figure 3 and Appendix S1).

3.2 | Predicted vegetation map

A predicted vegetation map was obtained based on the ensemble of 
predictions from multiple forests. Climate environment of the entire 
study area was classified into potential habitats of 13 forest types 
(Figure 4). The predicted map displays an obvious altitudinal zona-
tion from high-mountain woodland to montane cloud forests, fol-
lowed by the latitudinal differentiation of sub-montane and foothill 
forests in the subtropical and tropical parts of Taiwan. Two azonal 
forests, the tropical Illicium–Cyclobalanopsis forest and the subtropi-
cal Pyrenaria–Machilus forest, are mapped in the southern peninsula 

TA B L E  3   The most parsimonious random forest (RF) model for each forest type through the variable selection process of VSURF 
package. Predictor variables were sorted by their importance (Gini values) in descending order

Forest type Predictor variable/proportion of variable importance
OOB error rate 
(%)

Juniperus woodland and scrub Tmax6 (37.6%), Tmax5 (34.2%), Tmax3 (15.3%), Tmax4 (12.9%) 1.2

Abies–Tsuga forest Tmax5 (23.6%), Tmax6 (22.9%), Tmax3 (20.1%), Tave6 (12.0%), Tmax4 (10.1%), Tmax2 (7.3%), 
Tave5 (3.9%)

6.0

Chamaecyparis cloud forest Tave12 (19.9%), Tmax2 (13.1%), Tave1 (8.2%),Tmax9 (8.1%), Tave6 (5.5%),PPT12 (5.4%), 
Tmax11 (5.2%), PPT1 (5.0%), TD (4.7%), Tave2 (3.8%), PPT11 (3.7%), WPR (3.5%), PPT6 
(3.0%), WI (2.6%), Tave3 (2.5%), Tmax12 (2.3%), PPT10 (1.8%), PPT3 (1.7%)

8.7

Fagus cloud forest Tmax12 (21.6%), Tmax2 (19.8%), Tmax1 (18.6%), TD (11.9%), PPT1 (8.1%), Tmax11 (8.1%), 
PPT9 (7.6%), WPR (4.3%)

3.4

Quercus cloud forest Tave6 (14.1%), Tmin12 (13.4%), Tmax6 (10.2%), Tmin10 (9.6%), Tmax7 (8.2%), Tmax2 (6.7%), 
PPT1 (5.6%), PPT12 (5.2%), PPT3 (5.0%), PPT9 (4.6%), PPT10 (4.6%), Tave5 (3.3%), 
Tmin6 (2.8%), Tmax8 (2.7%), PPT11 (2.4%), PPT6 (1.8%)

11.0

Machilus–Castanopsis forest Tmax4 (15.9%), Tmax10 (13.6%), Tmax11 (10.8%), Tmin6 (9.9%), Tmax6 (7.9%), Tmax5 (7.2%), 
Tmax3 (7.1%), PPT10 (6.6%), Tmax12 (6.4%), Tmax1 (4.9%), Tmax9 (4.1%), Tmax7 (2.8%), 
PPT8 (2.7%)

16.7

Phoebe–Machilus forest Tmax9 (18.7%), Tave2 (15.1%), Tmax7 (12.4%), PPT3 (10.8%), PPT7 (8.6%), PPT4 (8.3%), 
Tmax11 (8.0%), Tave9 (7.3%), TD (2.9%), PPT9 (2.8%), PPT8 (2.6%), PPT10 (2.5%)

18.2

Ficus–Machilus forest Tmax11 (26.1%), Tmax10 (25.9%), Tmax9 (13.9%), SHM (12.1%), Tmax8 (11.6%), AHM 
(1.3%), MSP (3.1%), PPT5 (3.0%)

5.2

Pasania–Elaeocarpus cloud forest PPT4 (34.4%), PPT2 (26.4%), PPT3 (20.5%), WPR (9.1%), Tmax9 (5.0%), PPT7 (4.5%) 6.8

Drypetes–Helicia forest PPT3 (42.7%), PPT2 (16.0%), TD (13.6%), Tmax1 (10.8%), PPT1 (6.6%), Tmax8 (6.5%), 
PPT8 (3.9%)

5.7

Dysoxylum–Machilus forest Tave2 (45.7%), Tmax1 (40.4%), PPT5 (13.8%) 7.0

Illicium–Cyclobalanopsis winter 
monsoon forest

PPT4 (43.2%), Tmin1 (31.6%), TD (25.1%) 5.6

Pyrenaria–Machilus winter monsoon 
forest

TD (48.1%), PPT11 (28.1%), PPT1 (15.1%), PPT12 (8.6%) 6.8
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and the northeast corner. Ficus–Machilus forest is the most wide-
spread vegetation, occupying 25.64% of Taiwan's slope land. The 
rank of occupying area is followed by Quercus cloud forest (13.22%), 
Machilus–Castanopsis (12.05%), and Phoebe–Machilus forest (11.74%). 
High-mountain habitats with a total area of 390,000 ha, which are 
suitable for coniferous woodland and forests such as Juniperus, Abies, 
Tsuga, and Chamaecyparis, account for 14.52% of the study area. The 
area of habitats suitable for tropical mountain zonal forests is close 
to that for high-mountain vegetation (390,000  ha, accounting for 
14.49%) but distribution is relatively sparse among the predicted re-
gions (Table 4).

The altitudinal distribution of forests showed that most forest 
types dominate in a distinct altitudinal range (Figure 5); for example, 
Juniperus woodland and scrub occupied a mean elevation of 3,078 m 
a.s.l., Abies–Tsuga forest at 2,743 m a.s.l., Chamaecyparis cloud for-
est at 2,274 m a.s.l., and Pasania–Elaeocarpus cloud forest at 1,657 m 
a.s.l. in southern Taiwan. However, the altitudinal ranges of some for-
est types are overlapping and mixed; for example, Fagus cloud forest 
co-occurs with Quercus cloud forest at an elevation of 1,700 m a.s.l., 
Machilus–Castanopsis and Phoebe–Machilus forests are generally 
co-dominant at elevations of 800–1,000 m a.s.l., and two foothill for-
est types, Ficus–Machilus and Dysoxylum–Machilus forests, are mixed 
at elevations of 200–300 m a.s.l. in southern Taiwan (Figure 5).

The workflow of Figure 2 depicts the core region of each for-
est type and indicates habitats where adjacent forest types coex-
isted. The ensemble of multiple forests predicted that 72.67% of 
the study area (1,970,000 ha) was climatically suitable for a single 
dominant forest type, classified as a pure stand. However, the cli-
matic environment of 730,000 ha (~27.33% of the study area) was 
predicted to be suitable for two or more coexisting forest types, 
classified as a mixed stand. The remaining areas, 506 ha (0.02%), 

could not be identified by the RF models and are classified as un-
certain (Table 4). Figure 6 shows examples illustrating the pre-
dicted pure stands and mixed stands in the high-mountain areas 
of north Taiwan (Figure 6a) and in the tropical low hills of south 
Taiwan (Figure 6b). Because of topographical influences on me-
soclimate in the mountains, including lapse rate, orographic pre-
cipitation, and windward effects, the occurrence of mixed stands 
usually follows the iso-altitudinal belts on slopes. However, the 
spatial extent of the predicted mixed stands stretches from hun-
dreds to thousands of meters in width, depending on mountain 
steepness, aspect, and climate variation. The Ficus–Machilus forest 
is the most widespread forest type but it also shares a broader 
area of mixed stands of 160,000  ha with other forests, 66% of 
which (~110,000 ha) are habitats mixed with Dysoxylum–Machilus 
forest, mainly distributed in the tropical lowland of Taiwan. The 
Phoebe–Machilus forest (130,000 ha in total), primarily occurring 
at a middle elevation of 800 m a.s.l., is another forest type which 
has 46% (~60,000 ha) of mixed stands with its upper neighboring 
Machilus–Castanopsis forest at the ranges of 850–1,000 m a.s.l.

3.3 | Statistical evaluation of the ensemble model

In addition to the OOB error assessed during the model-building pro-
cess of each forest type, the overall accuracy of the ensemble RF mod-
els was evaluated by comparing the prediction at locations of the 3,817 
forest type-classified plots (Table 5). Model errors of fit (mismatch rate) 
were low for most forest types, ranging from 1.96% to 17.50% with an 
average of 6.59%. The findings revealed that the performance of the 
RF model was lower for distinguishing three vegetation types, namely 
Illicium–Cyclobalanopsis winter monsoon forest (error  =  17.50%), 

F I G U R E  3   Range of climatic variable estimates on the location of sampling plots of each forest type
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Machilus–Castanopsis forest (error = 14.21%), and Phoebe–Machilus for-
est (error = 10.98%). These three forest types mainly occur at elevations 
from 479 to 1,030 m a.s.l., the altitudinal range where several vegeta-
tion types tend to coexist and form mixed stands in Taiwan (Figure 5).

4  | DISCUSSION

4.1 | Model accuracy and its ability to predict the 
potential distribution of forests

The Random Forests approach is an ensemble classifier that aggre-
gates and averages predictions across multiple trees to generate ro-
bust outcomes. This method has been recommended for modeling 
the ecological niche of organisms and predicting their potential 

distribution (Wang et al., 2012; Chiu et al., 2013; Zhang et al., 2015), 
and it has been widely applied on both regional and global scales 
for the use of conservation and adaptation to environmental change 
(Attorre et al., 2011; Rehfeldt et al., 2012, 2006; Wang, Wang, et al., 
2016). In this study, RF models performed with a high degree of ac-
curacy in predicting the potential distribution of forest vegetation in 
Taiwan, with a mismatch rate of 6.59% on average.

However, the prediction accuracy for several forest types 
is comparatively lower, such as Illicium–Cyclobalanopsis win-
ter monsoon forest (with a mismatch rate of 17.50%), Machilus–
Castanopsis forest (14.21%), and Phoebe–Machilus forest (10.98%). 
Several possible reasons for this result are as follows: (a) Illicium–
Cyclobalanopsis forest is tropical vegetation exposed to winter 
monsoon directly, which is characterized by its cold-humid climate 
during winter, the high stem density, and richness in sclerophyllous 

F I G U R E  4   Predicted vegetation map 
of study area based on the ensemble of 
suitability of each forest type. The red 
rectangles are sample areas for illustrating 
the map in detail (see Figure 6)
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species. This forest type is narrowly restricted to windward hill 
ridges, but converts to high canopy leeward or to valley forests 
dramatically as the topography changes (Chao et al., 2010; Li et al., 
2013). In southern Taiwan, the habitats of Illicium–Cyclobalanopsis 
forest are usually fragmented and form a mosaic with sub-mon-
tane and foothill forests such as Drypetes–Helicia forest, Ficus–
Machilus forest, and Dysoxylum–Machilus forest. The transition 
of vegetation can occur over a very short distance, even <50  m 
(Chao, et al., 2007), which is too localized for the climate down-
scaling model to detect, resulting in a high percentage of mixed 
stands and low accuracy in the RF predictions. (b) The other two 

forest types with lower prediction accuracy, Machilus–Castanopsis 
forest and Phoebe–Machilus forest, are usually found at similar al-
titudinal ranges of 400–1,800 and 0–1,400 m (Li et al., 2013). At 
elevational ranges where Machilus–Castanopsis forest and Phoebe–
Machilus forest co-occur, the former usually dominates on ridges 
with drier and well-developed soil, whereas the latter has a low 
abundance and frequency of Fagaceae and tends to occur in rel-
atively narrow, shaded valleys, and humid habitats. The similarity 
in altitudinal ranges in combination with differentiation among mi-
crohabitats for Machilus–Castanopsis forest and Phoebe–Machilus 
forest may explain the lower prediction accuracy.

TA B L E  4   The area statistics of predicted forest types, pure stands and mixed stands are included

Predicted forest 
type Total area (ha) %

Pure stand Mixed stand
Coexisting forest type(s) within mixed 
stands and its proportionArea (ha) % Area (ha) %

Juniperus 29,134 1.08 13,590 46.65 15,544 53.35 Abies–Tsuga (1.00)

Abies–Tsuga 114,151 4.21 76,930 67.39 37,221 32.61 Juniperus (0.42), Chamaecyparis (0.58)

Chamaecyparis 250,006 9.23 204,420 81.77 45,586 18.23 Abies–Tsuga (0.47), Fagus (0.04), Quercus 
(0.49)

Fagus 15,433 0.57 9,993 64.75 5,440 35.25 Chamaecyparis (0.30), Quercus (0.06), 
Pyrenaria–Machilus (0.64)

Quercus 358,009 13.22 322,318 90.03 35,691 9.97 Chamaecyparis (0.62), Fagus (0.01), 
Machilus–Castanopsis (0.24), Phoebe–
Machilus (0.04), Pasania–Elaeocarpus 
(0.02), Pyrenaria–Machilus (0.07)

Machilus–
Castanopsis

326,277 12.05 233,338 71.52 92,939 28.48 Quercus (0.09), Phoebe–Machilus 
(0.65), Ficus–Machilus (0.14), Pasania–
Elaeocarpus (0.01), Drypetes–Helicia 
(0.07), Pyrenaria–Machilus (0.04)

Phoebe–Machilus 318,017 11.74 185,980 58.48 132,037 41.52 Quercus (0.02), Machilus–Castanopsis 
(0.46), Ficus–Machilus (0.28), Drypetes–
Helicia (0.02), Pyrenaria–Machilus (0.22)

Ficus–Machilus 694,606 25.64 531,653 76.54 162,953 23.46 Machilus–Castanopsis (0.08), Phoebe–
Machilus (0.23), Drypetes–Helicia (0.01), 
Dysoxylum–Machilus (0.66), Illicium–
Cyclobalanopsis (0.02)

Pasania–
Elaeocarpus

8,750 0.32 5,474 62.57 3,276 37.43 Quercus (0.19), Machilus–Castanopsis 
(0.01), Ficus–Machilus (0.02), Drypetes–
Helicia (0.62), Dysoxylum–Machilus (0.11), 
Illicium–Cyclobalanopsis (0.05)

Drypetes–Helicia 143,575 5.30 111,772 77.85 31,803 22.15 Machilus–Castanopsis (0.20), Phoebe–
Machilus (0.08), Ficus–Machilus (0.04), 
Pasania–Elaeocarpus (0.06), Dysoxylum–
Machilus (0.20), Illicium–Cyclobalanopsis 
(0.42)

Dysoxylum–
Machilus

240,205 8.87 122,659 51.06 117,546 48.94 Ficus–Machilus (0.91), Drypetes–Helicia 
(0.06), Illicium–Cyclobalanopsis (0.03)

Illicium–
Cyclobalanopsis

27,314 1.01 8,096 29.64 19,218 70.36 Ficus–Machilus (0.17), Pasania–Elaeocarpus 
(0.01), Drypetes–Helicia (0.68), 
Dysoxylum–Machilus (0.14)

Pyrenaria–
Machilus

182,806 6.75 142,180 77.78 40,626 22.22 Fagus (0.09), Quercus (0.06), Machilus–
Castanopsis (0.12), Phoebe–Machilus 
(0.72), Ficus–Machilus (0.01)

Uncertain 506 0.02 – – – -  

Total 2,708,789 100.00 1,968,403 72.67 739,880 27.33  
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Although a machine-learning model is difficult to interpret 
due to its complex variables, it can provide a starting point for 
identifying key predictor variables and testing theory in an exper-
imental framework. For example, our results show that tempera-
ture variables contribute to distinctly separate potential habitats 
of Juniperus woodland, Abies–Tsuga, Chamaecyparis, and Fagus 
forests (Table 3 and Appendix S1). Maximum monthly tempera-
ture of the growing season, especially at the thresholds of 15 °C 
(May) and 16.5 °C (June), closely corresponds with the boundaries 
of Juniperus woodland and Abies–Tsuga forest. For Chamaecyparis 
and Fagus forests, the important variables contributing to the RF 
model shift to winter temperature; for example, the thresholds 
of 7.2 °C (Tave of December), 11.9 °C (Tmax of February), 5.9 °C 
(Tave of January) for Chamaecyparis forest; and monthly maximum 
temperatures of 12.4 °C (December), 11.6 °C (February), and 10.7 
°C (January) for Fagus forest. The results also indicate that an-
nual temperature difference (TD) and winter precipitation play 
important roles in identifying the potential habitat of Fagus from 
other forest types. The range and threshold of predictors from a 
machine-learning model can provide insight into ways of broader 
exploration in ecosystems and can lead to a better understanding 
of forest habitat differentiation.

4.2 | Detailed inspections of the RF model 
predictions

Gradients of the physical environment may result in the presence 
of varying organisms and communities, which can lead to direc-
tional changes in the composition, physiognomy, and biological 

interactions of forests (Whittaker, 1975). A prominent niche 
model should elucidate factors that critically relate to biological 
phenomena, and precisely project these factors to their spatial 
extent.

In Taiwan, it has been reported that the mountain temperatures 
for a given elevation are higher at the central part of the mountain 
range, and lower at both the north and the south ends (Su, 1984a). 
This phenomenon may be attributed to the heat retention mecha-
nism of Massenerhebung (Su, 1984a) or the cooling effect induced 
by the northeast monsoon (Chiou et al., 2010), and it is responsible 
for the altitudinal compression of vegetation zones at the northern 
and southern tips of Taiwan, while a most extensive and distinguish-
able zonation in the middle part can be found. This pattern can be 
simulated well by our approach. Figure 7 illustrates the north–south 
profiles on model predictions of seven selected forest types, which 
are widespread throughout Taiwan, and demonstrates evident 
downward compression of vegetation zones at the north and south 
ends while a more extensive altitudinal distribution was modeled in 
central Taiwan.

Except for the large-scale climate patterns, topo-climatic varia-
tions such as rain shadow, radiative difference, and windward cool-
ing also influence the local distribution of forests. Snow Mountain 
is a mountain mass located in the middle of the northwest and 
central west climate region of Taiwan with the highest peak at an 
elevation of 3,886 m, where its northeast-facing slope is cool and 
humid due to the lack of sunlight and moist air brought by the win-
ter monsoon, yet a relatively warm and dry environment is formed 
on its south slope (Su, 1985). Su (1984b) reported that similar veg-
etation types occurred at lower elevations on the north-facing 
slope, e.g. the Abies zone distributed at 2,600–3,100 m (north) vs 

F I G U R E  5   The altitudinal ranges of 
forests based on the predicted vegetation 
map. Core habitats of most forest types 
occupied distinct altitudinal regions, 
however, habitats of some forests (eg. 
Fagus & Quercus, Machilus–Castanopsis 
& Phoebe–Machilus, Pasania–Elaeocarpus 
& Drypetes–Helicia, Ficus–Machilus & 
Dysoxylum–Machilus) were partially 
overlapped in elevation
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2,900–3,400 m (south); the Tsuga zone at 2,200–2,800 m (north) 
vs 2,200–2,900 m (south); and the Chamaecyparis zone at 1,600–
2,300 m (north) vs 1,700–2,400 m (south). We applied the RF mod-
els to predict and visualize the potential distributions of forests on 
Snow Mountain (Figure 6a and Appendix S2, or see the animation 
at https://youtu.be/NaR76​WVDp30) and verified it with observa-
tions made by Su in 1984. The predicted forest distributions are in 
very close agreement with Su's observations. Based on the work 
diagram of Figure 2, the RF models also indicate the locations of 
mixed stands, which is analogous to the characteristic of an eco-
tone — a community comprising part of the ecological features of 
its neighbors but having a specific site characteristic of its own 
(Barnes, Zak, Denton, & Spurr, 1997; Holland & Risser, 1991). On 
Snow Mountain, for example, the models identified mixed stands, 
400 m in width, between Juniperus woodland and Abies–Tsuga for-
est, and also mapped the transition between Chamaecyparis forest 
and Quercus forest.

4.3 | Applications of the RF model

In recent decades, climate data have become available from various 
sources published at fine-scale resolutions for ecological studies 
(Hannaway et al., 2005; Hijmans et al., 2005; Harris et al., 2014). 
The results of several studies in Europe (Hengl et al., 2018), North 
America (Rehfeldt et al., 2012; Wang et al., 2012), and mainland 
China (Zhang et al., 2015; Wang, Wang, et al., 2016) suggest that RF 
modeling is one of the optimal approaches for niche modeling and 
species distribution prediction, when sufficient presence/absence 
data exist (Zhang et al., 2015; Hengl et al., 2018). Fine-resolution 
predictions are particularly suitable for local interpretation and de-
cision-making applications. Most ecological niche-modeling stud-
ies have employed published global or regional climate databases, 
which have finest spatial resolutions of arc-seconds or kilometers, 
but they are still too coarse to provide detailed information regard-
ing mountainous and topographically diverse areas.

F I G U R E  6   The detailed mapping of predicted forest types. A pure stand is represented by a single color, whereas a mixed stand is 
indicated by the coexistence of a dot. (a) The prediction of high-mountain and subtropical montane forests with types of Juniperus, Abies–
Tsuga, Chamaecyparis, Quercus, and Machilus–Castanopsis. The belt-like mixed stands usually occur along an iso-elevation hillside. (b) The 
predicted mapping of tropical forests in southeast Taiwan where tropical montane forests (Pasania–Elaeocarpus and Drypetes–Helicia) 
mixed with subtropical foothill forest (Ficus–Machilus) and tropical winter monsoon forest (Illicium–Cyclobalanopsis). Broadly mixed stands 
of Drypetes–Helicia forest and Illicium–Cyclobalanopsis forest occurred at the north slope in a valley, where a cooler habitat exposed to the 
northeast monsoon during winter is predicted

https://youtu.be/NaR76WVDp30
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Besides, species from adjacent zones may occur and coexist 
along the border of a given zone due to their close climatic suitability 
and ecological requirements. Because of the mixed, intermediate, 
and specific ecological characteristics of ecotones, they have been 
reported as important species-rich areas for influencing local and 
regional biodiversity patterns (Martin et al., 2007; Neilson, 1993). 
Inhabitants of ecotones are often near their physical limits and com-
petitive tolerance, which means they may be sensitive to fluctuations 
and changes of environmental factors, and they are usually regarded 
as early indicators of the effects of climate change (Neilson, 1993; 
Risser, 1995; Wasson, Woolfolk, & Fresquez, 2013). The monitoring 
of migration patterns and compositional change in ecotones is one 
of the primary approaches for tracing the effects of climate change. 
For example, the range shift and demographical change of mountain 
forests often correspond with directional climatic change (Beniston, 
2003; Beckage et al., 2008; Evans & Brown, 2017).

Taiwan is a relatively small continental island, where the in-
teractions of humid monsoons, frequent typhoons, and dramatic 
topographical differences result in its diverse habitats and climatic 
conditions. The rainfall is enough for forest establishment over the 
whole island; however, factors including: (a) the significant tempera-
ture gradient along the elevational extent (Su, 1984b); (b) differ-
ences in seasonal precipitation (Su, 1985); and (c) mixed floras from 
tropical Asia and temperate Asia due to the island's historical and 
geographical context (Hsieh, Shen, & Yang, 1994), co-contribute to 
the diverse forests harboring plants from tropical, temperate, and 
even subarctic regions. We suggest that potential vegetation maps 
at high resolution can be powerful aids to serve as drafts for stand 
classification, guides for optimal land use, and fundamental models 
for projecting vegetation change under global warming scenarios. 
This study provides a statistical procedure integrating locations of 
field sampling plots and their corresponding climate variable esti-
mates to calculate, simulate, and visualize the potential distribution 
of climate-related forests. These applications especially benefit 
regions with complicated landscape mosaics with highly differen-
tiated vegetation communities, such as Taiwan. When detailed and 

precise training data are applied, e.g. the updated historical climate 
observations, future climate change scenarios, or supplemented in-
formation from more field plots, this procedure is reproducible and 
can be used to update the predicted forest map for prompt use in 
resource management.

Last, we acknowledge that this study and its findings have sev-
eral limitations. Azonal forests, whose occurrence and mortality are 
largely affected by non-climatic factors such as disturbances, succes-
sion, hydrologic regimes, and edaphic conditions, were not examined 
in detail. Although climate plays an important role in the distribution 
of zonal forests, there are still mechanical processes — such as compe-
tition, dispersal ability, and biotic or abiotic interactions — that are not 
considered by the statistical model in this study. Clearly, correlational 
modeling approaches can provide effective indications regarding eco-
logical niches and potential distributions of organisms for the use in 
large-scale resource management, but non-climatic variables and me-
chanical processes should also be considered while conducting plan-
ning and management of natural resources at local scales.
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